Improved residue contact prediction using support vector machines and a large feature set
نویسندگان
چکیده
منابع مشابه
Protein Residue Contact Prediction using Support Vector Machine
Protein residue contact map is a compact representation of secondary structure of protein. Due to the information hold in the contact map, attentions from researchers in related field were drawn and plenty of works have been done throughout the past decade. Artificial intelligence approaches have been widely adapted in related works such as neural networks, genetic programming, and Hidden Marko...
متن کاملPrediction of Contact Maps Using Support Vector Machines
Contact map prediction is of great interests for its application in fold recognition and protein 3D structure determination. In particular, we focusd on predicting non-local interactions in this paper. We employed Support Vector Machines (SVMs) as the machine learning tool and incorporated AAindex to extract correlated mutation analysis (CMA) and sequence profile (SP) features. In addition, we ...
متن کاملFeature Extraction Techniques Using Support Vector Machines in Disease Prediction
Data mining process is becoming important in healthcare industry due to very large volume of data produced and collected by them on daily basis. Support Vector Machine is the most commonly used classification algorithm for disease prediction in healthcare industry. It is widely used to predict the disease like diabetes, breast cancer, lung cancer, heart disease etc. It is advantageous to reduce...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملDistinctive feature detection using support vector machines
An important aspect of distinctive feature based approaches to automatic speech recognition is the formulation of a framework for robust detection of these features. We discuss the application of the support vector machines (SVM) that arise when the structural risk minimization principle is applied to such feature detection problems. In particular, we describe the problem of detecting stop cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2007
ISSN: 1471-2105
DOI: 10.1186/1471-2105-8-113